Geomechanics and Engineering A
Volume 39, Number 3, 2024, pages 257-271
DOI: 10.12989/gae.2024.39.3.257
Dynamic analysis of viscoelastic porous functionally graded plates resting on elastic foundation
Ömer Faruk Çapar, Mehmet Halil Çalim, Mehmet Bugra Özbey and Yavuz Cetin Cuma
Abstract
In this study, free and forced vibration behaviour of viscoelastic porous functionally graded (VPFG) plates resting on elastic foundations are investigated. Differential equations are obtained via higher order shear deformation theory. Equations of motion are obtained through energy formulations and Hamilton's principle. Navier's method based on double Fourier series is employed for the solution. Damping effect is implemented into the analysis by means of Kelvin and linear standard viscoelastic models. Viscoelastic material properties are used instead of elastic properties by means of the correspondence principle. Displacements of the plates are determined in Laplace domain and transformed into time domain by using Durbin's Modified Inverse Laplace transform method. The proposed algorithm's accuracy is validated through free and damped vibration analyses on VPFG plate, with results compared to existing studies in the literature. The study examines the influence of viscoelastic damping parameters, porosity volume fraction indexes, foundation characteristics, porosity distribution patterns and material property variations on the damped forced vibration response.
Key Words
forced vibration; free vibration; linear viscoelastic models; porous functionally graded plates
Address
Ömer Faruk Çapar, Mehmet Bugra Ozbey and Yavuz Cetin Cuma: Department of Civil Engineering, Adana Alparslan Turkes Science and Technology University, Türkiye
Mehmet Halil Çalim: Department of Civil Engineering, Cukurova University, Adana, Türkiye