Advances in Aircraft and Spacecraft Science

Volume 3, Number 4, 2016, pages 367-378

DOI: 10.12989/aas.2016.3.4.367

A numerical method for the study of fluidic thrust-vectoring

Michele Ferlauto and Roberto Marsilio

Abstract

Thrust Vectoring is a dynamic feature that offers many benefits in terms of maneuverability and control effectiveness. Thrust vectoring capabilities make the satisfaction of take-off and landing requirements easier. Moreover, it can be a valuable control effector at low dynamic pressures, where traditional aerodynamic controls are less effective. A numerical investigation of Fluidic Thrust Vectoring (FTV) is completed to evaluate the use of fluidic injection to manipulate flow separation and cause thrust vectoring of the primary jet thrust. The methodology presented is general and can be used to study different techniques of fluidic thrust vectoring like shock-vector control, sonic-plane skewing and counterflow methods. For validation purposes the method will focus on the dual-throat nozzle concept. Internal nozzle performances and thrust vector angles were computed for several range of nozzle pressure ratios and fluidic injection flow rate. The numerical results obtained are compared with the analogues experimental data reported in the scientific literature. The model is integrated using a finite volume discretization of the compressible URANS equations coupled with a Spalart-Allmaras turbulence model. Second order accuracy in space and time is achieved using an ENO scheme.

Key Words

thrust vectoring; dual throat nozzles; computational fluid dynamics

Address

Michele Ferlauto and Roberto Marsilio: Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy