Earthquakes and Structures

Volume 27, Number 2, 2024, pages 83-95

DOI: 10.12989/eas.2024.27.2.083

Seismic vulnerability of reinforced concrete structures using machine learning

Ioannis Karampinis and Lazaros Iliadis

Abstract

The prediction of seismic behavior of the existing building stock is one of the most impactful and complex problems faced by countries with frequent and intense seismic activities. Human lives can be threatened or lost, the economic life is disrupted and large amounts of monetary reparations can be potentially required. However, authorities at a regional or national level have limited resources at their disposal in order to allocate to preventative measures. Thus, in order to do so, it is essential for them to be able to rank a given population of structures according to their expected degree of damage in an earthquake. In this paper, the authors present a ranking approach, based on Machine Learning (ML) algorithms for pairwise comparisons, coupled with ad hoc ranking rules. The case study employed data from 404 reinforced concrete structures with various degrees of damage from the Athens 1999 earthquake. The two main components of our experiments pertain to the performance of the ML models and the success of the overall ranking process. The former was evaluated using the well-known respective metrics of Precision, Recall, F1-score, Accuracy and Area Under Curve (AUC). The performance of the overall ranking was evaluated using Kendall's tau distance and by viewing the problem as a classification into bins. The obtained results were promising, and were shown to outperform currently employed engineering practices. This demonstrated the capabilities and potential of these models in identifying the most vulnerable structures and, thus, mitigating the effects of earthquakes on society.

Key Words

binary classification; machine learning; ranking; seismic vulnerability

Address

Department of Civil Engineering, Democritus University of Thrace, V. Sofias 12, Xanthi, Greece