Earthquakes and Structures
Volume 14, Number 2, 2018, pages 103-115
DOI: 10.12989/eas.2018.14.2.103
A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate
Zakaria Belabed, Abdelmoumen Anis Bousahla, Mohammed Sid Ahmed Houari, Abdelouahed Tounsi and S.R. Mahmoud
Abstract
In this work, a simple but accurate hyperbolic plate theory for the free vibration analysis of functionally graded material (FGM) sandwich plates is developed. The significant feature of this formulation is that, in addition to including the shear deformation effect, it deals with only 3 unknowns as the classical plate theory (CPT), instead of 5 as in the well-known first shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). A shear correction factor is, therefore, not required. Two common types of FGM sandwich plates are considered, namely, the sandwich with the FGM face sheet and the homogeneous core and the sandwich with the homogeneous face sheet and the FGM core. The equation of motion for the FGM sandwich plates is obtained based on Hamilton‟s principle. The closed form solutions are obtained by using the Navier technique. The fundamental frequencies are found by solving the eigenvalue problems. Numerical results of the present theory are compared with the CPT, FSDT, order shear deformation theories (HSDTs), and 3D solutions. Verification studies show that the proposed theory is not only accurate and simple in solving the free vibration behaviour of FGM sandwich plates, but also comparable with the higher-order shear deformation theories which contain more number of unknowns.
Key Words
sandwich plate; functionally graded material; a simple 3-unknown theory
Address
Zakaria Belabed: Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes, Algeria; Department of Technology, Institute of Science and Technology, Center University of Naama, Algeria
Abdelmoumen Anis Bousahla: Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes, Algeria; Laboratoire de Modélisation et Simulation Multi-échelle, Département de Physique, Faculté des Sciences Exactes,
Département de Physique, Université de Sidi Bel Abbés, Algeria; Département de Génie Civil, Centre Universitaire de Relizane, Algeria
Mohammed Sid Ahmed Houari: Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes, Algeria; Department of Civil Engineering, Université Mustapha Stambouli de Mascara, Mascara, Algeria
Abdelouahed Tounsi: Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes, Algeria; Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Eastern Province, Saudi Arabia
S.R. Mahmoud: Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia