Earthquakes and Structures
Volume 10, Number 4, 2016, pages 789-810
DOI: 10.12989/eas.2016.10.4.789
Seismic fragility performance of skewed and curved bridges in low-to-moderate seismic region
Luke Chen and Suren Chen
Abstract
Reinforced concrete (RC) bridges with both skew and curvature are pretty common in areas with complex terrains. Existing studies have shown skewed and/or curved bridges exhibit more complicated seismic performance than straight bridges, and yet related seismic risk studies are still rare. These bridges
deserve more studies in low-to-moderate seismic regions than those in seismic-prone areas. This is because for bridges with irregular and complex geometric designs, comprehensive seismic analysis is not always required and little knowledge about actual seismic risks for these bridges in low-to-moderate regions is available. To provide more insightful understanding of the seismic risks and the impact from the geometric
configurations, analytical fragility studies are carried out on four typical bridge designs with different geometric configurations (i.e., straight, curved, skewed, skewed and curved) in the mountain west region of the United States. The results show the curved and skewed geometries can considerably affect the bridge seismic fragility in a complex manner, underscoring the importance of conducting detailed seismic risk
assessment of skewed and curved bridges in low-to-moderate seismic regions.
Key Words
seismic; curved and skewed bridge; fragility; risk; FEM analysis
Address
Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA