Coupled Systems Mechanics

Volume 9, Number 5, 2020, pages 397-410

DOI: 10.12989/csm.2020.9.5.397

Thermomechanical interactions in a non local thermoelastic model with two temperature and memory dependent derivatives

Parveen Lata and Sukhveer Singh

Abstract

The present investigation is concerned with two-dimensional deformation in a homogeneous isotropic non local thermoelastic solid with two temperatures due to thermomechanical sources. The theory of memory dependent derivatives has been used for the study. The bounding surface is subjected to concentrated and distributed sources (mechanical and thermal sources). The Laplace and Fourier transforms have been used for obtaining the solution to the problem in the transformed domain. The analytical expressions for displacement components, stress components and conductive temperature are obtained in the transformed domain. For obtaining the results in the physical domain, numerical inversion technique has been applied. Numerical simulated results have been depicted graphically for explaining the effects of nonlocal parameter on the components of displacements, stresses and conductive temperature. Some special cases have also been deduced from the present study. The results obtained in the investigation should be useful for new material designers, researchers and physicists working in the field of nonlocal material sciences.

Key Words

thermoelasticity; nonlocality; nonlocal theory of thermoelasticity; Eringen model of nonlocal theories; two temperature; memory dependent derivative; concentrated and distributed sources

Address

Parveen Lata: Department of Basic and applied Sciences, Punjabi University Patiala, India Sukhveer Singh: Punjabi University APS Neighbourhood Campus, Dehla Seehan, India