Computers and Concrete
Volume 15, Number 3, 2015, pages 391-410
DOI: 10.12989/cac.2015.15.3.391
Numerical modelling of nonlinear behaviour of prestressed concrete continuous beams
Tiejiong Lou, Sergio M.R. Lopes and Adelino V. Lopes
Abstract
The development of a finite element model for the geometric and material nonlinear analysis of bonded prestressed concrete continuous beams is presented. The nonlinear geometric effect is introduced by the coupling of axial and flexural fields. A layered approach is applied so as to consider different material properties across the depth of a cross section. The proposed method of analysis is formulated based on the Euler-Bernoulli beam theory. According to the total Lagrangian description, the constructed stiffness matrix consists of three components, namely, the material stiffness matrix reflecting the nonlinear material effect, the geometric stiffness matrix reflecting the nonlinear geometric effect and the large displacement stiffness matrix reflecting the large displacement effect. The analysis is capable of predicting the nonlinear behaviour of bonded prestressed concrete continuous beams over the entire loading stage up to failure. Some numerical examples are presented to demonstrate the validity and applicability of the proposed model.
Key Words
prestressed concrete beams; finite element; material nonlinearity; geometric nonlinearity; behaviour
Address
Tiejiong Lou and Sergio M.R. Lopes: CEMUC, Department of Civil Engineering, University of Coimbra, Coimbra 3030-788, Portugal
Adelino V. Lopes: Department of Civil Engineering, University of Coimbra, Coimbra 3030-788, Portugal