Wind and Structures
Volume 28, Number 2, 2019, pages 089-97
DOI: 10.12989/was.2019.28.2.089
Linearized analysis of the internal pressures for a two-compartment building with leakage
Xianfeng Yu, Ming Gu and Zhuangning Xie
Abstract
The non-linear equations governing wind-induced internal pressures for a two-compartment building with background leakage are linearized based on some reasonable assumptions. The explicit admittance functions for both building compartments are derived, and the equivalent damping coefficients of the coupling internal pressure system are iteratively obtained. The RMS values of the internal pressure coefficients calculated from the non-linear equations and linearized equations are compared. Results indicate that the linearized equations generally have good calculation precision when the porosity ratio is less than 20%. Parameters are analyzed on the explicit admittance functions. Results show that the peaks of the internal pressure in the compartment without an external opening (Compartment 2) are higher than that in the compartment with an external opening (Compartment 1) at lower Helmholtz frequency. By contrast, the resonance peak of the internal pressure in compartment 2 is lower than that in compartment 1 at higher Helmholtz frequencies.
Key Words
internal pressure; governing equation; linearization; background leakage; admittance function
Address
Xianfeng Yu: State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510640, China;
State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
Ming Gu: State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
Zhuangning Xie: State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510640, China