Advances in Nano Research

Volume 10, Number 3, 2021, pages 221-234

DOI: 10.12989/anr.2021.10.3.221

Flow of MHD Powell-Eyring nanofluid: Heat absorption and Cattaneo-Christov heat flux model

Humaira Sharif, Mohamed A. Khadimallah, Muhammad Nawaz Naeem, Muzamal Hussain, Sajjad Hussain and Abdelouahed Tounsi

Abstract

During the previous few years, phenomenon of bioconvection along with the use of nanoparticles showed large number of applications in technological and industrial field. This paper analyzed the bioconvection phenomenon in magnetohydrodynamic boundary layer flow of a Powell-Eyring nanoliquid past a stretchable cylinder with Cattaneo-Christov heat flux. In addition, the impacts of chemical reaction and heat generation/absorption parameter are considered. By the use of appropriate transformation, the governing PDEs (nonlinear) have been transformed and formulated into nonlinear ODEs. The resulting nonlinear ODEs subjected to relevant boundary conditions are solved analytically through homotopy analysis method which is programmed in Mathematica software. Graphical and numerical results versus physical quantities like velocity, temperature, concentration and motile microorganism are investigated under the impact of physical parameters. It is noted that velocity profile enhances as the curvature parameter A and Eyring-Powell fluid parameter M increases but a decline manner for large values of buoyancy ratio parameter Nr and bio-convection Rayleigh number Rb. In the presence of Prandtl number Pr, Eyring-Powell fluid parameter M and heat absorption parameter o, temperature profile decreases. Nano particle concentration profile increases for increasing values of magnetic parameter Ha and thermophoresis parameter Nt. The motile density profile has revealed a decrement pattern for higher values of bio-convection Lewis number Lb and bio-convection peclet number Pe. This study may find uses in bio-nano coolant systems, advance nanomechanical bio-convection energy conversion equipment's etc.

Key Words

Powell-Eyring nanofluid; MHD flow; Cattaneo-Christov heat flux; heat generation/absorption; chemical reaction; bioconvection; HAM

Address

(1) Humaira Sharif, Muhammad Nawaz Naeem and Muzamal Hussain: Department of Mathematics, Govt. College University Faisalabad, 38000, Faisalabad, Pakistan (2) Mohamed A. Khadimallah: Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department, Al-Kharj, 16273, Saudi Arabia; Laboratory of Systems and Applied Mechanics, Polytechnic School of Tunisia, University of Carthage, Tunis, Tunisia (3) Sajjad Hussain: Department of mathematics, Govt Post graduate college, Layyah, Pakistan (4) Abdelouahed Tounsi: YFL (Yonsei Frontier Lab), Yonsei University, Seoul, Korea; Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Eastern Province, Saudi Arabia