Advances in Nano Research

Volume 10, Number 3, 2021, pages 211-219

DOI: 10.12989/anr.2021.10.3.211

Analyzing corrosion rates of TiO2 nanotubes/titanium separation passive layer under surface and crystallization changes

I. Zamudio Torres, A. Sosa Domínguez, J.J. Pérez Bueno, Y. Meas, M.L. Mendoza López and A. Dector

Abstract

The evaluation of the corrosion resistance of titanium with a TiO2 nanotubes top layer was carried out (TiO2 NT). These nanostructures were evolved into anatase nanoparticles without heat treatment in an aqueous medium, which is a novel phenomenon. This work analyzes the layer between the nanotube bottom and the substrate, which is thin and still susceptible to corrosion. The bottom of TiO2 nanotubes having Fluor resulting from the synthesis process changed between amorphous to crystalline anatase with a crystallite size of about 4 nm, which influenced the corrosion rates. Four kinds of samples were evaluated. A) NT by Ti anodizing; B) NTSB for Ti plates, either modifying its surface or anodizing the modified surface; C) NT-480 for anodized Ti and heat-treated (480oC) for reaching the anatase phase; D) NTSB-480 for Ti plates, first, modifying its surface using sandblast, after that, anodizing the modified surface, and finally, heat-treated to 480oC to compare with samples having induced crystallization and passivation. Four electrochemical techniques were used to evaluate the corrosion rates. The surfaces having TiO2 nanotubes with a sandblast pre-treatment had the highest resistance to corrosion.

Key Words

nano-tubes; photocatalytic material; characterization and application; nano-materials; nanostructured crystals

Address

(1) I. Zamudio Torres: Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S.C., Parque Tecnológico Sanfandila, Pedro Escobedo, Querétaro, México; Universidad Juárez Autónoma de Tabasco, Avenida Universidad S/N, Zona de La Cultura, Col. Magisterial, Centro, Villahermosa, Tabasco, 86040, México (2) A. Sosa Domínguez: Universidad Autónoma de Querétaro, Facultad de Química, Cerro de las Campanas s/n C.P. 76010, Cto. Universitario, Centro Universitario, Santiago de Querétaro, Querétaro, México (3) J.J. Pérez Bueno: Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S.C., Parque Tecnológico Sanfandila, Pedro Escobedo, Querétaro, México (4) Y. Meas: Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S.C., Parque Tecnológico Sanfandila, Pedro Escobedo, Querétaro, México (5) M.L. Mendoza López: Tecnológico Nacional de México, Instituto Tecnológico de Querétaro, Av. Tecnológico s/n Esq. M. Escobedo, Col. Centro, Santiago de Querétaro, Querétaro, México (6) A. Dector: CONACYT, Universidad Tecnológica de San Juan del Río, Av. La Palma No. 125, Vista Hermosa, San Juan del Río, Querétaro, México