Smart Structures and Systems
Volume 29, Number 4, 2022, pages 617-624
DOI: 10.12989/sss.2022.29.4.617
Smart tracking design for aerial system via fuzzy nonlinear criterion
Ruei-yuan Wang, C.C. Hung and Hsiao-Chi Ling
Abstract
A new intelligent adaptive control scheme was proposed that combines the control based on interference observer and fuzzy adaptive s-curve for flight path tracking control of unmanned aerial vehicle (UAV). The most important contribution is that the control configurations don't need to know the uncertainty limit of the vehicle and the influence of interference is removed. The proposed control law is an integration of fuzzy control estimator and adaptive proportional integral (PI) compensator with input. The rated feedback drive specifies the desired dynamic properties of the closed control loop based on the known properties of the preferred acceleration vector. At the same time, the adaptive PI control compensate for the unknown of perturbation. Additional terms such as s-surface control can ensure rapid convergence due to the non-linear representation on the surface and also improve the stability. In addition, the observer improves the robustness of the adaptive fuzzy system. It has been proven that the stability of the regulatory system can be ensured according to linear matrix equality based Lyapunov's theory. In summary, the numerical simulation results show the efficiency and the feasibility by the use of the robust control methodology.
Key Words
adaptive fuzzy system; disturbance-observer-based control; Lyapunov energy function; unmanned aerial vehicle
Address
(1) Ruei-yuan Wang:
School of Science, Guangdong University of Petrochemical Technology, Guangdong Province, China;
(2) C.C. Hung:
Department of Mechanical Engineering, National Taiwan University, Taipei & Faculty of National Hsin Hua Senior High School, Tainan, Taiwan;
(3) Hsiao-Chi Ling:
School of Information, Kainan University, Taoyuan, Taiwan.