Structural Monitoring and Maintenance

Volume 11, Number 1, 2024, pages 019-40

DOI: 10.12989/smm.2024.11.1.019

Green's function coupled with perturbation approach to dynamic analysis of inhomogeneous beams with eigenfrequency and rotational effect's investigations

Hamza Hameed, Sadia Munir and F.D. Zaman

Abstract

The elastic theory of beams is fundamental in engineering of design and structure. In this study, we construct Green's function for inhomogeneous fourth−order differential operators subjected to associated constraints that arises in dealing with dynamic problems in the Rayleigh beam. We obtain solutions for homogeneous and completely inhomogeneous beam problems using Green's function. This enables us to consider rotational influences in determining the eigenfrequency of beam vibrations. Additionally, we investigate the dynamic vibration model of inhomogeneous beams incorporating rotational effects. The eigenvalues of Rayleigh beams, including first−order correction terms, are also computed and displayed in tabular forms.

Key Words

Euler−Bernoulli Beam; Green's function; inhomogeneous; perturbation; Rayleigh beam; vibrations

Address

Hamza Hameed1, Sadia Munir and F.D. Zaman: Abdus Salam School of Mathematical Sciences, Government College University, Lahore-54000, Pakistan