Structural Monitoring and Maintenance
Volume 9, Number 3, 2022, pages 271-287
DOI: 10.12989/smm.2022.9.3.271
Different strengthening designs and material properties on bending behavior of externally reinforced concrete slab
Saeed Najafi and Shahin Borzoo
Abstract
This study investigates the bending behavior of a composite concrete slab roof with different methods of externally strengthing using steel plates and carbon fiber reinforced polymer (CFRP) strips. First, the concrete slab model which was reinforced with CFRP strips on the bottom surface of it is validated using experimental data, and then, using numerical modeling, 7 different models of square-shaped composite slab roofs are developed in ABAQUS software using the finite element modeling. Developed models include steel rebar reinforced concrete slab with variable thickness of CFRP and steel plates. Considering the control sample which has no external reinforcement, a set of 8 different reinforcement states has been investigated. Each of these 8 states is examined with 6 different uncertainties in terms of the properties of the materials in the construction of concrete slabs, which make 48 numerical models. In all models loading process is continued until complete failure occurs. The results from numerical investigations showed using the steel plates as an executive method for strengthening, the bending capacity of reinforced concrete slabs is increased in the ultimate bearing capacity of the slab by about 1.69 to 2.48 times. Also using CFRP strips, the increases in ultimate bearing capacity of the slab were about 1.61 to 2.36 times in different models with different material uncertainties.
Key Words
composite FRPs; external reinforcement; reinforced concrete slab; steel deck
Address
(1) Saeed Najafi:
Department of Earthquake Engineering, Tarbiat Modares University, Tehran, Iran;
(2) Shahin Borzoo:
Lifeline Earthquake Engineering Department, International Institute of Earthquake Engineering and Seismology, Tehran, Iran.