Structural Engineering and Mechanics
Volume 86, Number 3, 2023, pages 399-415
DOI: 10.12989/sem.2023.86.3.399
Experimental and numerical research on the behavior of steel-fiber -reinforced-concrete columns with GFRP rebars under axial loading
Iman Saffarian, Gholam Reza Atefatdoost, Seyed Abbas Hosseini and Leila Shahryari
Abstract
This paper presents the experimental and numerical evaluations on the circular SFRC columns reinforced GFRP rebars under the axial compressive loading. The test programs were designed to inquire and compare the effects of different parameters on the columns' structural behavior by performing experiments and finite element modeling. The research variables were conventional concrete (CC), fiber concrete (FC), types of longitudinal steel/GFRP rebars, and different configurations of lateral rebars. A total of 16 specimens were manufactured and categorized into four groups based on different rebar-concrete arrangements including GRCC, GRFC, SRCC, and SRFC. Adding steel fibers (SFs) into the concrete, it was essential to modify the concrete damage plastic (CDP) model for FC columns presented in the finite element method (FEM) using ABAQUS 6.14 software. Failure modes of the columns were similar and results of peak loads and corresponding deflections of compression columns showed a suitable agreement in tests and numerical analysis. The behavior of GFRP-RC and steel-RC columns was relatively linear in the pre-peak branch, up to 80-85% of their ultimate axial compressive loads. The axial compressive loads of GRCC and GRFC columns were averagely 80.5% and 83.6% of axial compressive loads of SRCC and SRFC columns. Also, DIs of GRCC and GRFC columns were 7.4% and 12.9% higher than those of SRCC and SRFC columns. Partially, using SFs compensated up to 3.1%, the reduction of the compressive strength of the GFRP-RC columns as compared with the steel-RC columns. The effective parameters on increasing the DIs of columns were higher volumetric ratios (up to 12%), using SFs into concrete (up to 6.6%), and spiral (up to 5.5%). The results depicted that GFRP-RC columns had higher DIs and lower peak loads compared with steel-RC columns.
Key Words
axial compressive load; Conventional Concrete (CC); Ductility Index (DI); Fiber Concrete (FC); GFRP rebars; numerical analysis
Address
Iman Saffarian, Gholam Reza Atefatdoost: Department of Civil Engineering, Estahban Branch, Islamic Azad University, Estahban, Iran
Seyed Abbas Hosseini: Faculty of Technology and Mining, Yasouj University, Choram, Iran
Leila Shahryari: Department of Civil Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran