Structural Engineering and Mechanics

Volume 84, Number 1, 2022, pages 1-16

DOI: 10.12989/sem.2022.84.1.001

Classification method for failure modes of RC columns based on key characteristic parameters

Bo Yu, Zecheng Yu, Qiming Li and Bing Li

Abstract

An efficient and accurate classification method for failure modes of reinforced concrete (RC) columns was proposed based on key characteristic parameters. The weight coefficients of seven characteristic parameters for failure modes of RC columns were determined first based on the support vector machine-recursive feature elimination. Then key characteristic parameters for classifying flexure, flexure-shear and shear failure modes of RC columns were selected respectively. Subsequently, a support vector machine with key characteristic parameters (SVM-K) was proposed to classify three types of failure modes of RC columns. The optimal parameters of SVM-K were determined by using the ten-fold cross-validation and the grid-search algorithm based on 270 sets of available experimental data. Results indicate that the proposed SVM-K has high overall accuracy, recall and precision (e.g., accuracy>95%, recall>90%, precision>90%), which means that the proposed SVM-K has superior performance for classification of failure modes of RC columns. Based on the selected key characteristic parameters for different types of failure modes of RC columns, the accuracy of SVM-K is improved and the decision function of SVM-K is simplified by reducing the dimensions and number of support vectors.

Key Words

classification method; failure modes; key characteristic parameters; reinforced concrete columns; support vector machine

Address

Bo Yu: School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China; Key Laboratory of Engineering Disaster Prevention and Structural Safety of China Ministry of Education, China; Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Nanning 530004, China Zecheng Yu: School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China Qiming Li: Power China Central China Electric Power Engineering Co, Ltd., Zhengzhou 450007, China Bing Li: School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore