Structural Engineering and Mechanics
Volume 81, Number 3, 2022, pages 293-303
DOI: 10.12989/sem.2022.81.3.293
Neural network based numerical model updating and verification for a short span concrete culvert bridge by incorporating Monte Carlo simulations
S.T.K. Lin, Y. Lu, M.M. Alamdari and N.L.D. Khoa
Abstract
As infrastructure ages and traffic load increases, serious public concerns have arisen for the well-being of bridges. The current health monitoring practice focuses on large-scale bridges rather than short span bridges. However, it is critical that more attention should be given to these behind-the-scene bridges. The relevant information about the construction methods and as-built properties are most likely missing. Additionally, since the condition of a bridge has unavoidably changed during service, due to weathering and deterioration, the material properties and boundary conditions would also have changed since its construction. Therefore, it is not appropriate to continue using the design values of the bridge parameters when undertaking any analysis to evaluate bridge performance. It is imperative to update the model, using finite element (FE) analysis to reflect the current structural condition. In this study, a FE model is established to simulate a concrete culvert bridge in New South Wales, Australia. That model, however, contains a number of parameter uncertainties that would compromise the accuracy of analytical results. The model is therefore updated with a neural network (NN) optimisation algorithm incorporating Monte Carlo (MC) simulation to minimise the uncertainties in parameters. The modal frequency and strain responses produced by the updated FE model are compared with the frequency and strain values on-site measured by sensors. The outcome indicates that the NN model updating incorporating MC simulation is a feasible and robust optimisation method for updating numerical models so as to minimise the difference between numerical models and their real-world counterparts.
Key Words
finite element model updating; neural network optimization; short span bridge; unidentified construction method
Address
S.T.K. Lin, Y. Lu: Department of Civil Engineering, Monash University, Melbourne, VIC, Australia
M.M. Alamdari: School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
N.L.D. Khoa: Data61, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Sydney, NSW, Australia