Structural Engineering and Mechanics

Volume 72, Number 2, 2019, pages 217-227

DOI: 10.12989/sem.2019.72.2.217

Shape sensing with inverse finite element method for slender structures

Pierclaudio Savino, Marco Gherlone and Francesco Tondolo

Abstract

The methodology known as \"shape sensing\" allows the reconstruction of the displacement field of a structure starting from strain measurements, with considerable implications for structural monitoring, as well as for the control and implementation of smart structures. An approach to shape sensing is based on the inverse Finite Element Method (iFEM) that uses a variational principle enforcing a least-squares compatibility between measured and analytical strain measures. The structural response is reconstructed without the knowledge of the mechanical properties and load conditions but based only on the relationship between displacements and strains. In order to efficiently apply iFEM to the most common structural typologies of civil engineering, its formulation according to the kinematical assumptions of the Bernoulli-Euler theory is presented. Two beam inverse finite elements are formulated for different loading conditions. Depending on the type of element, the relationship between the minimum number of required measurement stations and the interpolation order is defined. Several examples representing common applications of civil engineering and involving beams and frames are presented. To simulate the experimental strain data at the station points and to verify the accuracy of the displacements obtained with the iFEM shape sensing procedure, a direct FEM analysis of the considered structures is performed using the LUSAS software.

Key Words

shape sensing, iFEM, Euler-Bernoulli theory, structural monitoring, displacements

Address

Pierclaudio Savino/Politecnico di Torino Marco Gherlone/Politecnico di Torino Francesco Tondolo/Politecnico di Torino