Structural Engineering and Mechanics
Volume 68, Number 4, 2018, pages 423-442
DOI: 10.12989/sem.2018.68.4.423
In-plane response of masonry infilled RC framed structures: A probabilistic macromodeling approach
Dario De Domenico, Giovanni Falsone and Rossella Laudani
Abstract
In this paper, masonry infilled reinforced concrete (RC) frames are analyzed through a probabilistic approach. A macro-modeling technique, based on an equivalent diagonal pin-jointed strut, has been resorted to for modelling the stiffening contribution of the masonry panels. Since it is quite difficult to decide which mechanical characteristics to assume for the diagonal struts in such simplified model, the strut width is here considered as a random variable, whose stochastic characterization stems from a wide set of empirical expressions proposed in the literature. The stochastic analysis of the masonry infilled RC frame is conducted via the Probabilistic Transformation Method by employing a set of space transformation laws of random vectors to determine the probability density function (PDF) of the system response in a direct manner. The knowledge of the PDF of a set of response indicators, including displacements, bending moments, shear forces, interstory drifts, opens an interesting discussion about the influence of the uncertainty of the masonry infills and the resulting implications in a design process.
Key Words
RC frames; masonry infills; macro-modeling approaches; probability transformation method; probability density function; probability-based design
Address
Dario De Domenico, Giovanni Falsone and Rossella Laudani: Department of Engineering, University of Messina, Contrada Di Dio, 98166 Sant\'Agata, Messina, Italy