Structural Engineering and Mechanics

Volume 60, Number 5, 2016, pages 781-794

DOI: 10.12989/sem.2016.60.5.781

Experimental investigation of multi-layered laminated glass beams under in-plane bending

Xiaokun Huang, Qiang Liu, Gang Liu, Zhen Zhou and Gang Li

Abstract

Due to its relatively good safety performance and aesthetic benefits, laminated glass (LG) is increasingly being used as load-carrying members in modern buildings. This paper presents an experimental study into one applicational scenario of structural LG subjected to in-plane bending. The aim of the study is to reveal the in-plane behaviors of the LG beams made up of multi-layered glass sheets. The LG specimens respectively consisted of two, three and four plies of glass, bonded together by two prominent adhesives. A total of 26 tests were carried out. From these tests, the structural behaviors in terms of flexural stiffness, load resistance and post-breakage strength were studied in detail, whilst considering the influence of interlayer type, cross-sectional interlayer percentage and presence of shear forces. Based on the test results, analytical suggestions were made, failure modes were identified, corresponding failure mechanisms were discussed, and a rational engineering model was proposed to predict the post-breakage strength of the LG beams. The results obtained are expected to provide useful information for academic and engineering professionals in the analysis and design of LG beams bending in-plane.

Key Words

laminated glass beam; in-plane bending; shear; multi-layered; post-breakage strength

Address

Xiaokun Huang, Qiang Liu and Gang Liu: China Academy of Building Research, Beijing, China Zhen Zhou: Kuraray (Shanghai) Co. Inc., China Gang Li: Fuxin Special Glass Co. Inc., China