Steel and Composite Structures
Volume 51, Number 2, 2024, pages 173-183
DOI: 10.12989/scs.2024.51.2.173
Performance-based seismic design of a spring-friction damper retrofit system installed in a steel frame
Masoum M. Gharagoz, Seungho Chun, Mohamed Noureldin and Jinkoo Kim
Abstract
This study investigates a new seismic retrofit system that utilizes rotational friction dampers and axial springs. The
retrofit system involves a steel frame with rotational friction dampers (RFD) at beam-column joints and linear springs at the
corners, providing energy dissipation and self-centering capabilities to existing structures. The axial spring acts as a selfcentering mechanism that eliminates residual deformations, while the friction damper mitigates seismic damage. To evaluate the
seismic performance of the proposed retrofit system, a series of cyclic loading tests were carried out on a steel beam-column
subassembly equipped with the proposed devices. An analytical model was then developed to validate the experimental results.
A performance point ratio (PPR) was presented to optimize the design parameters of the retrofit system, and a performancebased seismic design strategy was developed based on the PPR. The retrofit system's effectiveness and the presented
performance-based design approach were evaluated through case study models, and the analysis results demonstrated that the
developed retrofit system and the performance-based design procedure were effective in retrofitting structures for multi-level
design objectives.
Key Words
performance-based seismic design; seismic retrofit; self-centering; steel frame
Address
Masoum M. Gharagoz:1)Department of Civil Engineering, School of Engineering, Aalto University, Finland
2)Department of Global Smart City, Sungkyunkwan University, South Korea
Seungho Chun:Department of Global Smart City, Sungkyunkwan University, South Korea
Mohamed Noureldin:Department of Civil Engineering, School of Engineering, Aalto University, Finland
Jinkoo Kim:Department of Global Smart City, Sungkyunkwan University, South Korea