Steel and Composite Structures

Volume 46, Number 1, 2023, pages 33-51

DOI: 10.12989/scs.2023.46.1.033

Topology optimization with functionally graded multi-material for elastic buckling criteria

Minh-Ngoc Nguyen, Dongkyu Lee, Joowon Kang and Soomi Shin

Abstract

This research presents a multi-material topology optimization for functionally graded material (FGM) and nonFGM with elastic buckling criteria. The elastic buckling based multi-material topology optimization of functionally graded steels (FGSs) uses a Jacobi scheme and a Method of Moving Asymptotes (MMA) as an expansion to revise the design variables shown first. Moreover, mathematical expressions for modified interpolation materials in the buckling framework are also described in detail. A Solid Isotropic Material with Penalization (SIMP) as well as a modified penalizing material model is utilized. Based on this investigation on the buckling constraint with homogenization material properties, this method for determining optimal shape is presented under buckling constraint parameters with non-homogenization material properties. For optimal problems, minimizing structural compliance like as an objective function is related to a given material volume and a buckling load factor. In this study, conflicts between structural stiffness and stability which cause an unfavorable effect on the performance of existing optimization procedures are reduced. A few structural design features illustrate the effectiveness and adjustability of an approach and provide some ideas for further expansions.

Key Words

buckling constraint; FGM; Jacobi scheme; multi-material; SIMP; topology optimization

Address

Minh-Ngoc Nguyen:Department of Architectural Engineering, Sejong University, Seoul, 05006, Republic of Korea Dongkyu Lee:Research Institute of Industrial Technology, Pusan National University, Busan, 46241, Republic of Korea Joowon Kang and Soomi Shin:School of Architecture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea