Advances in Computational Design
Volume 5, Number 2, 2020, pages 195-207
DOI: 10.12989/acd.2020.5.2.195
Prediction of UCS and STS of Kaolin clay stabilized with supplementary cementitious material using ANN and MLR
Arvind Kumar and S. Rupali
Abstract
The present study focuses on the application of artificial neural network (ANN) and Multiple linear Regression (MLR) analysis for developing a model to predict the unconfined compressive strength (UCS) and split tensile strength (STS) of the fiber reinforced clay stabilized with grass ash, fly ash and lime. Unconfined compressive strength and Split tensile strength are the nonlinear functions and becomes difficult for developing a predicting model. Artificial neural networks are the efficient tools for predicting models possessing non linearity and are used in the present study along with regression analysis for predicting both UCS and STS. The data required for the model was obtained by systematic experiments performed on only Kaolin clay, clay mixed with varying percentages of fly ash, grass ash, polypropylene fibers and lime as between 10-20%, 1-4%, 0-1.5% and 0-8% respectively. Further, the optimum values of the various stabilizing materials were determined from the experiments. The effect of stabilization is observed by performing compaction tests, split tensile tests and unconfined compression tests. ANN models are trained using the inputs and targets obtained from the experiments. Performance of ANN and Regression analysis is checked with statistical error of correlation coefficient (R) and both the methods predict the UCS and STS values quite well; but it is observed that ANN can predict both the values of UCS as well as STS simultaneously whereas MLR predicts the values separately. It is also observed that only STS values can be predicted efficiently by MLR.
Key Words
Kaolin clay; grass ash; unconfined compression test; split tensile test; artificial neural network; regression model
Address
Department of Civil Engineering, Dr. B R Ambedkar National Institute of Technology Jalandhar, India