Steel and Composite Structures

Volume 29, Number 6, 2018, pages 735-748

DOI: 10.12989/scs.2018.29.6.735

Cyclic behaviour of concrete encased steel (CES) column-steel beam joints with concrete slabs

Liusheng Chu, Danda Li, Xing Ma and Jun Zhao

Abstract

In this paper, the cyclic behavior of steel beam-concrete encased steel (CES) column joints was investigated experimentally and numerically. Three frame middle joint samples with varying concrete slab widths were constructed. Anti-symmetrical low-frequency cyclic load was applied at two beam ends to simulate the earthquake action. The failure modes, hysteretic behavior, ultimate load, stiffness degradation, load carrying capacity degradation, displacement ductility and strain response were investigated in details. The three composite joints exhibited excellent seismic performance in experimental tests, showing high load-carrying capacity, good ductility and superior energy dissipation ability. All three joint samples reached their ultimate loads due to shear failure. Numerical results from ABAQUS modelling agreed well with the test results. Finally, the effect of the concrete slab on ultimate load was analyzed through a parametric study on concrete strength, slab thickness, as well as slab width. Numerical simulation showed that slab width and thickness played an important role in the load-carrying capacity of such joints. As a comparison, the influence of concrete grade was not significant.

Key Words

beam-column joint; concrete encased steel (CES) column; steel beam with concrete slabs; cyclic loads; shear capacity; moment capacity

Address

(1) Liusheng Chu, Jun Zhao: School of Civil Engineering, Zhengzhou University, Zheng Zhou, Henan Province, China; (2) Danda Li, Xing Ma: School of Natural and Built Environments, University of South Australia, Adelaide, SA, Australia.