Ocean Systems Engineering

Volume 7, Number 4, 2017, pages 413-433

DOI: 10.12989/ose.2017.7.4.413

Dynamic and structural responses of a submerged floating tunnel under extreme wave conditions

Chungkuk Jin and MooHyun Kim

Abstract

The dynamic and structural responses of a 1000-m long circular submerged floating tunnel (SFT) with both ends fixed under survival irregular-wave excitations are investigated. The floater-mooring nonlinear and elastic coupled dynamics are modeled by a time-domain numerical simulation program, OrcaFlex. Two configurations of mooring lines i.e., vertical mooring (VM) and inclined mooring (IM), and four different buoyancy-weight ratios (BWRs) are selected to compare their global performances. The result of modal analysis is included to investigate the role of the respective natural frequencies and elastic modes. The effects of various submergence depths are also checked. The envelopes of the maximum/minimum horizontal and vertical responses, accelerations, mooring tensions, and shear forces/bending moments of the entire SFT along the longitudinal direction are obtained. In addition, at the mid-section, the time series and the corresponding spectra of those parameters are also presented and analyzed. The pros and cons of the two mooring shapes and high or low BWR values are systematically analyzed and discussed. It is demonstrated that the time-domain numerical simulation of the real system including nonlinear hydro-elastic dynamics coupled with nonlinear mooring dynamics is a good method to determine various design parameters.

Key Words

ubmerged floating tunnel (SFT); hydro-elasticity; coupled dynamics; wet natural modes; dynamic/structural responses; irregular waves; vertical/inclined mooring; mooring tension; buoyancy weight ratio (BWR); shear force; bending moment

Address

Chungkuk Jin and MooHyun Kim: Department of Ocean Engineering, Texas A&M University, College Station, TX, USA