CONTENTS
Volume 29, Number 1, 2022
-
Preface: Special issue of the 1st International Project Competition of Structural Health Monitoring (IPC-SHM 2020)
Dr. Yuequan Bao, Dr. Jian Li, Dr. Tomonori Nagayama, Dr. Hui Li, Dr. Billie F. Spencer, Jr.
pages i-i.
-
A modified U-net for crack segmentation by Self-Attention-Self-Adaption neuron and random elastic deformation
Jin Zhao, Fangqiao Hu, Weidong Qiao, Weida Zhai, Yang Xu, Yuequan Bao and Hui Li
pages 1-16.
DOI: 10.12989/sss.2022.29.1.001
-
Damaged cable detection with statistical analysis, clustering, and deep learning models
Hyesook Son, Chanyoung Yoon, Yejin Kim, Yun Jang, Linh Viet Tran, Seung-Eock Kim, Dong Joo Kim and Jongwoong Park
pages 17-28.
DOI: 10.12989/sss.2022.29.1.017
-
A three-stage deep-learning-based method for crack detection of high-resolution steel box girder image
Shiqiao Meng, Zhiyuan Gao, Ying Zhou, Bin He and Qingzhao Kong
pages 29-39.
DOI: 10.12989/sss.2022.29.1.029
-
Unsupervised one-class classification for condition assessment of bridge cables using Bayesian factor analysis
Xiaoyou Wang, Lingfang Li, Wei Tian, Yao Du, Rongrong Hou and Yong Xia
pages 41-51.
DOI: 10.12989/sss.2022.29.1.041
-
Data anomaly detection for structural health monitoring using a combination network of GANomaly and CNN
Gaoyang Liu, Yanbo Niu, Weijian Zhao, Yuanfeng Duan and Jiangpeng Shu
pages 53-62.
DOI: 10.12989/sss.2022.29.1.053
-
Convolutional neural network-based data anomaly detection considering class imbalance with limited data
Yao Du, Ling-fang Li, Rong-rong Hou, Xiao-you Wang, Wei Tian and Yong Xia
pages 63-75.
DOI: 10.12989/sss.2022.29.1.063
-
SHM data anomaly classification using machine learning strategies: A comparative study
Jau-Yu Chou, Yuguang Fu, Shieh-Kung Huang and Chia-Ming Chang
pages 77-91.
DOI: 10.12989/sss.2022.29.1.077
-
Data anomaly detection for structural health monitoring of bridges using shapelet transform
Monica Arul and Ahsan Kareem
pages 93-103.
DOI: 10.12989/sss.2022.29.1.093
-
Condition assessment of stay cables through enhanced time series classification using a deep learning approach
Zhiming Zhang, Jin Yan, Liangding Li, Hong Pan and Chuanzhi Dong
pages 105-116.
DOI: 10.12989/sss.2022.29.1.105
-
Data abnormal detection using bidirectional long-short neural network combined with artificial experience
Kang Yang, Huachen Jiang, Youliang Ding, Manya Wang and Chunfeng Wan
pages 117-127.
DOI: 10.12989/sss.2022.29.1.117
-
Detection of multi-type data anomaly for structural health monitoring using pattern recognition neural network
Ke Gao, Zhi-Dan Chen, Shun Weng, Hong-Ping Zhu and Li-Ying Wu
pages 129-140.
DOI: 10.12989/sss.2022.29.1.129
-
Smartphone-based structural crack detection using pruned fully convolutional networks and edge computing
X.W. Ye, Z.X. Li and T. Jin
pages 141-151.
DOI: 10.12989/sss.2022.29.1.141
-
One-step deep learning-based method for pixel-level detection of fine cracks in steel girder images
Zhihang Li, Mengqi Huang, Pengxuan Ji, Huamei Zhu and Qianbing Zhang
pages 153-166.
DOI: 10.12989/sss.2022.29.1.153
-
Long-term condition monitoring of cables for in-service cable-stayed bridges using matched vehicle-induced cable tension ratios
Zhen Peng, Jun Li and Hong Hao
pages 167-179.
DOI: 10.12989/sss.2022.29.1.167
-
CNN based data anomaly detection using multi-channel imagery for structural health monitoring
Shaik Althaf V. Shajihan, Shuo Wang, Guanghao Zhai and Billie F. Spencer Jr.
pages 181-193.
DOI: 10.12989/sss.2022.29.1.181
-
An active learning method with difficulty learning mechanism for crack detection
Jiangpeng Shu, Jun Li, Jiawei Zhang, Weijian Zhao, Yuanfeng Duan and Zhicheng Zhang
pages 195-206.
DOI: 10.12989/sss.2022.29.1.195
-
Impacts of label quality on performance of steel fatigue crack recognition using deep learning-based image segmentation
Shun-Hsiang Hsu, Ting-Wei Chang and Chia-Ming Chang
pages 207-220.
DOI: 10.12989/sss.2022.29.1.207
-
Crack segmentation in high-resolution images using cascaded deep convolutional neural networks and Bayesian data fusion
Wen Tang, Rih-Teng Wu and Mohammad R. Jahanshahi
pages 221-235.
DOI: 10.12989/sss.2022.29.1.221
-
Synthetic data augmentation for pixel-wise steel fatigue crack identification using fully convolutional networks
Guanghao Zhai, Yasutaka Narazaki, Shuo Wang, Shaik Althaf V. Shajihan and Billie F. Spencer Jr.
pages 237-250.
DOI: 10.12989/sss.2022.29.1.237
-
A semi-supervised interpretable machine learning framework for sensor fault detection
Panagiotis Martakis, Artur Movsessian, Yves Reuland, Sai G.S. Pai, Said Quqa, David Garcıa Cava, Dmitri Tcherniak and Eleni Chatzi
pages 251-266.
DOI: 10.12989/sss.2022.29.1.251